
1											Dahlgren	et	al.

Rexsss	Performance	Analysis:		
Domain	Decomposition Algorithm	Implementations for	Resilient	
Numerical	Partial	Differential	Equation Solvers

K.	M.	Dahlgren*,	F.	Rizzi**,	K.	V.	Morris**,	and	B.	J.	Debusschere**

*California	State	University,	Stanislaus,	One	University	Circle,	Turlock,	CA	
95382,	U.S.A.
**Sandia	National	Laboratories,	7011	East	Avenue, Livermore,	CA	
94550,	U.S.A.

The	future	of	extreme-scale	computing	is	expected to	magnify	the	
influence of	soft	faults	as	a	source	of	inaccuracy	or	failure	in	solutions	
obtained	from	distributed	parallel	computations.		The	development	of	
resilient	computational	tools	represents	an	essential	recourse	for	
understanding	the	best	methods	for	absorbing	the	impacts	of	soft	
faults	without	sacrificing	solution	accuracy.		The	Rexsss	(Resilient	
Extreme	Scale	Scientific	Simulations)	project	pursues	the	
development	of	fault	resilient	algorithms	for	solving	partial	
differential	equations	(PDEs) on	distributed	systems.		Performance	
analyses	of	current	algorithm	implementations	assist	in	the	
identification	of	runtime	inefficiencies.	

I.		Introduction
The	Rexsss project represents	a	research	and	development	effort	dedicated	

to	creating	numerical	PDE	solvers	implemented	for	parallel	execution	on	distributed	
systems	and	designed	to	incorporate fault	resiliency	as	an	essential	algorithmic	
trait.		The	Rexsss	solver	algorithms use generalized	versions	of	the	additive	Schwarz	
domain	decomposition	approach	for	generating	numerical	PDE	solutions.		The	
additive	Schwarz	algorithm	divides	the	PDE	solution	space	into	a	number	of
subdomains	and	consolidates	the	results	of	a	large	number	of	sample	PDE	solutions	
generated	within	each	subdomain	per	iteration	until	the	numerical	solve converges	
to the	target	PDE 1.		The	current	paper	discusses	the	analysis	of	the	scalability	of	
various	implementations	of	core	sections	of	the	Rexsss	algorithms.	The	specifics	of	
the	algorithms	that	lead	to	resilience	are	discussed	elsewhere 2.	Two of	the	major
algorithms currently	implemented	within	the	Rexsss	code	base	are the	Distributed	1	
Core	Per	Subdomain	(D1CPS)	and	Task	Manager	(TM)	approaches.		

The	D1CPS	implementation	produces	numerical	solutions for	one-
dimensional	PDEs	using	a	specified	number	of	processors	running	in	parallel.		
Computations	for	all	solutions	over	a	given	subdomain	occur	within	a	single	core.
Accordingly,	the	number	of	processors	utilized	for	the	calculation	of	a PDE	solution	
equals	the	number	of	subdomains	partitioning	the	solution	space.

In	the	TM	implementation,	a	set	of	one	or	more	server	nodes	divides	the	
numerical	PDE	solve	into	a	series	of	individual	computations	and	communications	
and	distributes	the	tasks	among	a	collection	of	one	or	more	client clusters	such	that	
each	cluster	contains one	or	more	devoted	cores.		Each server	core	is	responsible	for	

SAND2014-16842R

2											Dahlgren	et	al.

determining	and	distributing	PDE	solve	tasks	to	a	different	subset	of	the	client	
clusters.		Additionally,	each server	is	responsible	for	collecting PDE	solutions	over	a	
different	subset	of	subdomains.		Updating	communications	occur	between	client	
clusters	and	server	nodes	and	between	server	nodes. The	server(s)	also	represent
repositories for	solution	data	obtained	from	client	calculations.		As	a	result,	the	
algorithm	inherently	limits	the	impact	of	hard	faults	occurring	on	one	or	more	of	the	
client cores to	the	loss of	data	from	single	sample	solutions or	communications.		The	
approach	renders	the	destructive	power	of	hard	faults upon	solution	accuracy	
practically	negligible.		The	parallel	processing	capabilities	of	the	D1CPS	and	TM	
tools	rely	on the	MPICH	implementation	of	the	MPI	(Message	Passing	Interface)	
standard.

The	performance	analyses	of	the	D1CPS and	TM solvers explore the	weak	
scaling	behaviors	of	the	code	implementations.		Valid	weak	scaling	comparisons
require	test	cases ensure the	amount	of	computational work	performed	by	each	
processor	is	equivalent for	each processor	involved	in	all	of	the	tests,	where	the	
metric	for	computational	work	is real execution	time in	seconds 3.	 Ideally,	
increasing	the	numbers	of	processors used	in	each	test	case	equates	to	a	linear	
increase	in	the	total	amount	of	work	involved	in	solving	each	of	the	test	problems.	

The	performance	analyses	calculate the	weak	scaling	efficiencies of	different	
subsections	of	the	solver	implementations using	manual	instrumentation	
statements	gathering	execution	time	data	per	isolated	code	section.		Resulting	
scaling	comparisons	for	the	D1CPS	implementation	suggest the	execution	times	
devoted	to	sampling	and	updating	processes	do	not	scale	well	on	the	current	
hardware	system	as	the	number of	processors increases.		Data	for	the	weak	scaling	
analysis	of	the	TM	implementation	exhibit similar	efficiency	trends.

II.		Methods
The	performance	analyses	focused upon	test	cases	designed	to	provide	

insight	into	the	weak	scaling	behaviors	of	the D1CPS and	TM	implementations of	the	
Rexsss	tools.		Weak	scaling represents a	measure	of	the ability	of	a	software	tool	to	
distribute	computational	work among	a	collection	of	processors consistently,
regardless	of	the	number	of	processors	in	the	collection 3.	 Calculations of	weak	
scaling	efficiency	data	result	from	the	formula:	[t1/ tN]	*	100%,	where	t1	
represents	the	execution	time	required	for	a	test	case	containing	a reference
collection of	processors	and	tN represents	the	execution	time	of	a	larger test	case
containing N	times	the	number	of	reference	collections of	processors. Ideally,	the	
addition	of processors	to	a	system	only	results	in an	increase	of computational work	
equal	to	or	less	than	the	proportional	amount	of	work	expected	of	a	reference	
collection	of processors within	the	system.	 Software	exhibiting	good	weak	scaling	
manifests approximately	similar	percent	efficiencies	for	test	cases	incorporating	
larger	and	larger	collections	of	cores.		Deviations	from	the	ideal	weak	scaling	
efficiency	trend	indicate	the	presence	of	confounding	factors	relating	increases	in	
numbers	of	processing	units	to	either	negative	or	positive	effects	on	tool	execution	
within	the	context	of	individual	processors.

3											Dahlgren	et	al.

All	test	cases	pursued	by	the	weak	scaling	performance	analysis	ran	on	an	in-
house four-node	development	cluster	running	Linux	and designed	such	that	each	
node	contained 32	cores.		For	the D1CPS	tests, cores	reserved	for	the	execution	of	
each	case	were	equally	distributed	among	each	of	the	four	nodes.		For	example,	
when	running	a	test	using	8	cores,	each	of	the	four	system	nodes	reserved	2	cores	
for	the	execution	of	the	test.		For	the	TM	tests,	one	node	contained	all	the server	
cores	and	the	remaining	3	nodes shared	a	uniform	distribution	of	all	the	client	cores.		
For	example,	in	each	of	the	8-core	TM	tests,	the	2	server	cores	lived	in	one	node	and	
the	3	other	nodes	each	contained	2	client	cores.		

Though	a	number	of	pre-processing	functions	and	iteration	post-processing	
directives	contribute	to	the	overall	execution	times	of	the	tools,	the	associated	
performance	costs	are	negligible	and	do	not	constitute	crippling performance	
bottlenecks.		Instead,	processes	related	directly	to	the	PDE	solve	and	to	inter-core	
communications	constitute the	most	profitable areas	for	performance	
optimizations.		Accordingly,	the	weak	scaling	analysis	centralized	around	efficiency	
trends	associated	with	the	sampling	and	updating	processes	of	the	solver	
implementations.		The	sampling	process	encompassed all	CPU	time	devoted	
exclusively	to	PDE	solution	calculations.		In	contrast,	the	updating	process	
encompassed all	CPU	time devoted	exclusively	to	the	communication	of subdomain	
iteration solutions to	the	processors	of neighboring	subdomains.		Manual	
instrumentation	statements written	in	C++,	the	native	language	of	the	Rexsss	code	
base, isolated	the	sampling	and	updating	processes	and	captured	the	associated real	
execution	times	per	subdomain.		The	instrumentations	output	the	average,	
minimum,	and	maximum	real	execution	times	for	the	total amount	of	time	spent	
sampling	and	updating	per test	case for	each	process. The	sampling	and	updating	
data	per	iteration	result	from	dividing	the	total	execution	times	for	the	processes	by	
the	number	of	iterations	required	by	the	test	case	to	achieve	convergence.

A. Solution	Grid	Parameters
All	test	cases	solved	the ODE described	by	d2y/dx2 =	0,	where	y(xL) =	1	and

y(xR) =	yR =	xR+1.		The	boundary	conditions at	the	x-coordinates xL	and	xR varied	
depending	upon	the	test	case	parameters to	ensure	the	solution grids	possessed	
comparable	characteristics as	discussed	further	below.	 For	all	test	cases,	the
boundary	conditions	were	constructed	such	that	the analytical	solution	was	y=x+1.		
The	number	of	points	per subdomain	for	all	tests	was	517 with	an overlap	of	32	
cells	per	subdomain.	 Each	iteration	of	the	tests required	subdomains	calculate	
exactly	30 inner	samples of	the	ODE	solution	at	different	subdomain	boundary	
conditions. The	grid	spacing	for	all	tests	was	fixed	at	0.0005.		All	tests	ran	until	
convergence	measured	in	terms	of	a root-mean-square error	tolerance with	the	true	
solution	of	the	PDE	obtained	via	analytical	derivation methods.

For	the	performance	analysis, work	was	defined	in	terms	of	the	real	
execution	time	devoted	to	sampling	and	updating	processes	per	subdomain.		
Configuration	parameter	restrictions	ensured all	cores	performed the	same	amount	
of	work	across	all	tests	by requiring	each	subdomain in	each	test	case	possess the	
characteristics of:

4											Dahlgren	et	al.

(a)	Solving over	a	section	of	the	same	PDE.
(b)	Containing	the same	number	of	points	per	subdomain.
(c)	Containing the	same	number	of	overlapping	grid	cells.
(d)	Enforcing	the same	length	of	grid	spacing	between all constituent	points.

The	absolute	solution	interval	for	the	PDE	must	vary	in	length across	test	
solution	grids to	ensure	the	grid	spacing,	number	of	points	per	subdomain,	and	
overlap	are	constant	across	all	test cases.		The	test	configurations	accommodated	
the	requirement	by fixing	the	left	boundary	point	and	extending	the	right	boundary	
point slightly as	the	number	of	cores	increased.	 Additionally,	ensuring	the	different	
performance	test	cases	solve	at	least	a	subsection	of	the	same	solution	grid	imposes	
a	general	consistency	upon	the	complexity	of	the	test	case	problems.		As	a	result,	the	
constraints ensured each	subdomain	experienced the	same	number of	sampling	
calculations	and	the	same	problem	complexities per	test	case.		

B.		Test	Cases:	Distributed 1	Core	Per	Subdomain
Test	cases	for	the	D1CPS	implementation	ran	using	2,	4,	8,	16,	32,	64,	and	128	

cores.			Since	the	D1CPS	algorithm	implementation	relegates	work	performed	within	
individual	subdomains to	work	performed	within	individual	cores,	the	consistent	
configuration	parameters	of	the	different	test	solution	grids	ensure	all	the	
processors	involved	in	each	test	case	engaged	in approximately	the	same	amount	of	
sampling	work,	regardless	of	the	number	of	cores involved	in	a	particular test.

The	D1CPS	algorithm implementation requires the	number of updating	
processes	used to	solve	a	PDE	over	a	set	of	subdomains	to	be proportional	to	the	
number	of	subdomains	partitioning	the	solution	grid.		The	partitioning	scheme	
divides the	solution	space	into	a	set	of	inner	subdomains	flanked	by	two	boundary	
subdomains.		The	inner	subdomains	communicate	sample	solution	data	to	exactly	
two	processors	representing	the	left-hand	and	right-hand	subdomains. The	
boundary	subdomains	communicate	sample	solutions	to	exactly	one neighboring	
subdomain	processor. Accordingly,	the	number	of	updating	communications
experienced	by	each	individual	boundary	subdomain	remains	constant	per	test	case.		
Likewise,	the	number	of	updating	communications	experienced	by	any	one	inner
core	remains	constant	per	test	case.		As	a	result, the	individual	boundary	cores	
involved	in	each	test experience	approximately	the	same	amount	of	updating work,	
regardless	of	the	number	of	cores	involved	in	a	particular	test.		Similarly,	the	
individual	inner	cores	involved	in	each	test	experience	approximately	the	same	
amount	of	updating	work,	regardless	of	the	number	of	cores	involved	in	a	particular	
test.

The	proportionality	of	the	test	case	solution	grid	conditions	proffer the	2-
core test as	a	valid base	case	for	all	weak	scaling	calculations.	 Since	all	the	larger	
test	cases	utilize a	number	of	cores	equal	to	a	power	of	2,	the	2-core	case	represents
a	reference	collection	of	processors for	the	for	the	work	involved	in	completing	the	
PDE	solves	pursued	by	the	larger	test	cases.

5											Dahlgren	et	al.

C.		Test	Cases:	Task	Manager
Test	cases	for	the	TM	implementation	ran	with 8,	16,	and	32 cores and client	

sizes	of	1	and	3.		Tests	possessing a client	size of 1	indicate	constituent	client	
clusters	contain	only	1	devoted	core.		On	the	other	hand,	tests	possessing	a	client	
size	of	3	indicate constituent	client	clusters	contain	the	computing	resources	of	3	
devoted	cores.		Table	I in	Appendix	A lists	the	six different	TM	test	case	
configurations	of	servers	and	clients.

Since	the	TM algorithm	implementation utilizes	the	computing	power	of	a	
group	of	one	or	more server processors	to divide PDE	solution	work	into	a	list	of	
tasks distributed among	a	collection	of	one	or	more	client clusters,	the	uniformity	of	
the	task	determination	and	distribution	process ensures all	client cluster	cores	
involved	in	each	test	case	engage in	approximately	the	same	amount	of	sampling	
work,	regardless	of	the	number	of	cores	involved	in	a	particular	test.		Similarly,	
since	the	updating	processes used	to	solve	a	PDE	over	a	set	of	subdomains	are	
distributed	uniformly	among	the	client	processors,	all	client clusters involved	in	
each	test	experience	approximately	the	same	amount	of	updating	work.

Because the	server	processors	do	not	perform	calculations,	the	servers	
engage	in	work entirely	different	from	the	computational	loads handled by	client	
processors.		Accordingly, test	cases	supporting	valid	weak	scaling	comparisons	for	
TM	test	cases	expand	upon	a	reference	collection of	processors	encompassing	both	
server	and	client	cores.		Additionally,	test	cases	involving	different	client	sizes	are	
inherently	incompatible due	to	the drastic	differences	in	the total	number	of	cores
sharing	the	computational	work.		Accordingly,	TM	weak	scaling	analyses	compare	
the	efficiencies	of	test	cases	sharing	the	same	client	size	as	the	number	of	cores	
increases.		The	chosen	base	cases	for	the	TM	analyses with	the	different	client	sizes
are the	two	8-core	tests in	Table	I.		Since	all	the	successively	larger	test	cases	utilize	
a	number	of	server	and	client	cores equal	to	a	multiple of	2	greater	than	the	
numbers	of	server	and	client	cores	in	the	smaller	tests,	the	8-core case	represents	a	
basic	unit	of	work	for	the	PDE	solves	pursued	by	the	larger	test	cases.

III.		Results
The	results	of	the	performance	analyses	encompass	weak	scaling	efficiency	

plots	for	the	Distributed	1	Core	Per	Subdomain	and	the	Task	Manager	algorithm	
implementations.		Appendix	B	contains graphs	of	the	weak	scaling	data for	all	
performance	tests.

A.		Weak	Scaling:		Distributed	1	Core	Per	Subdomain
The	results	of	the	D1CPS	performance	analysis	encompass	data	regarding	the	

weak	scaling	efficiencies	of	the	real	sampling	and	updating	times per	iteration.

1.		D1CPS:	Sampling	Time	Per	Iteration
Figure	1	in	Appendix	B	shows	the	weak	scaling	efficiencies	of	the	sampling	

functionality per	iteration of	the	D1CPS	algorithm	implementation in	relation	to	
increasing	numbers	of	cores.		The	dotted	blue	line	represents	the	weak	scaling	data	
for	the	minimum	sampling	execution	time	experienced during	an	iteration	by	a	

6											Dahlgren	et	al.

single	core	in	the test	cases.		In	contrast,	the	dashed	blue	line represents the	weak	
scaling	efficiencies	of	the	maximum	sampling	execution	time	experienced	during	an	
iteration	by a	single	core	in	a particular test	case.		The	solid	blue	line	represents	the	
weak	scaling	efficiencies	of	the	average	sampling	time	per	iteration calculated	from	
the	average	time spent	by each	core in	the	sampling	process.		

The	minimum,	maximum,	and	average weak	scaling	data	exhibit	a	downward	
trend	with	increasing	numbers	of	processors.		Accordingly,	the	deviation	from	
ideally	equivalent	weak	scaling	efficiencies	suggests	the	presence	of	factors	causing	
the	increasing	numbers	of	processors	to	negatively	impact	the	execution	time	
devoted	to	solution	sampling	across	all	subdomains	per	iteration.		Since	the	
complexities	of	test	case	problems	are	equivalent, the	increasing numbers of
sampling processes required	to	support	higher	numbers	of	subdomains do not	
represent	a	factor	decreasing the	overall	sampling efficiency.	 Instead,	the	results	
suggest the	source	of	the	negative	impact	upon	sampling	execution	efficiency	stems	
from an	increased	amount	of	time	devoted	to	calculating	individual	sampling	
solutions.		The	increases	in	individual	sample	solution calculation	times culminate	
in	higher	total sampling	execution	times per	iteration	and,	consequently,	decrease	
weak	scaling	efficiencies for test	cases using	larger	collections	of	processors.		

2.		D1CPS:	Updating	Time	Per	Iteration
Figure	2	graphs the	weak	scaling	efficiencies	of	the	updating	functionality	of	

the	D1CPS	algorithm	implementation	in	relation	to	increasing	numbers	of	
processors	used	to	solve	the	test	cases.		The	dotted	red	line	represents	the	weak	
scaling	data	for	the	minimum	updating	execution	time	experienced	during	an	
iteration	by	a	single	core	in	a	test	case.		In	contrast,	the	dashed	red	line	represents	
the	weak	scaling	efficiencies	of	the	maximum	updating	execution	time	experienced	
during	an	iteration	by	a	single	core in	a particular test	case. The	solid	red	line	
represents	the	weak	scaling	efficiencies	of	the	average	updating	time	per	iteration	
calculated	from	the	average	time	spent	by	each	core	pursuing updating	
communications.

The	updating	time	per	iteration	efficiencies	reflect	the	trends	revealed by	the	
weak	scaling	analysis	of	sampling	execution	times per	iteration.		The	minimum,	
maximum,	and	average	weak	scaling	data	exhibit	a	rapid	downward	descent with	
increasing	numbers	of	processors.		The	deviation	from	ideally	equivalent	weak	
scaling	efficiencies	indicates	the	presence	of	factors	causing	the	increasing	numbers	
of	processors	to	negatively	impact	the	execution	times devoted	to	updating	
communications per	iteration.		Since	the	complexities	of	all	the	test	case	problems	
are equivalent,	the	increasing numbers of	updating processes	required	to	support	
higher	numbers	of	subdomains	do not	represent	a	factor	decreasing the	overall	
efficiencies	of updating	processes	per	iteration.		Consequently,	the	source	of	the	
negative	impact	upon	updating costs per	iteration is	an	increased	amount	of	time	
devoted	to	performing individual	update	communications.		The	increases	in	
individual	update	communication	costs result in	higher	total updating execution	
times	per	iteration	and,	consequently,	decrease	weak	scaling	efficiencies	for	test	
cases	utilizing larger	collections	of	processors.		

7											Dahlgren	et	al.

B.		Weak	Scaling:		Task	Manager
The	results	of	the	TM	performance	analyses	encompass	data	regarding	the	

weak	scaling	efficiencies	of	the	real	sampling	time	per	iteration	and	the	weak	scaling	
efficiencies	of	the	real	updating	time	per	iteration for	tests	cases	sharing	a	client	size	
of	1	and	for	test	cases	sharing	a	client	size	of	3.

1.		TM:	Sampling	Time	Per	Iteration
Figure 3	shows	the	weak	scaling	efficiencies	of	the	sampling	functionality	per	

iteration	of	the	TM algorithm	implementation	in	relation	to	increasing	numbers	of	
processors.		The	blue line	represents	the	weak	scaling	data	for	the average sampling	
execution	time	per iteration	for	the	test	cases using	a	client	size	of	1.		The	red line	
represents	the	weak	scaling	efficiencies	of	the	average	sampling	time	per	iteration	
for	test	cases	using	a	client	size	of	3.

Both	the	client	size	1	and	the	client	size	3	weak	scaling	data	exhibit	a	
downward	trend	with	increasing	numbers	of	processors.	 Given	the consistent	
complexities	of	problem definitions	across	test cases, the	results	indicate the	source	
of	the	decreasing	sampling	efficiencies	centers around increasing amounts	of	time	
required	to	calculate individual	sampling	solutions.		The increased execution	times
result in	higher	total sampling	costs per	iteration as	the	number	of	processors	
increases.

2.		TM:	Updating	Time	Per	Iteration
Figure	4	displays the	weak	scaling	efficiencies	of	the	updating	processes for

the	TM algorithm	implementation	in	relation	to	increasing	numbers	of	processors.		
The	blue line	represents	the	weak	scaling	data	for	the	average	total	updating
communication time	per	iteration	for	the	test	cases	using	a	client	size	of	1.		The	red
line	represents	the	weak	scaling	efficiencies	of	the	average	total	updating	
communication time	per	iteration	for	test	cases	using	a	client	size	of	3.

The	efficiencies	of	updating	costs	per	iteration	reflect	the	trends	revealed	by	
the	weak	scaling	analysis	of	sampling	costs.		The	average	weak	scaling	data	exhibit	a	
rapid	downward	trend as	the	number	of	processors increases.		Since	all	the	server
cores are	located	within	a	single	node, inter-node	communication	hardware	exerts	
physical	constraints upon	updating	processes	conducted	between	servers	and	client	
clusters.	 The	increased	frequency	of	updating	communications required	to	support	
higher	numbers	of	subdomains	increases	the	number	of	inter-node	
communications.		Accordingly,	increasing	the	number	of	signals	traveling	down	the	
same	fixed-bandwidth	communication	channel	renders	hardware	issues	a	potential	
source	of	the	observed	decreased	updating	efficiencies.

IV.		Discussion
The	weak	scaling	analysis	results for	sampling	and	updating	processes	

occurring	within	both	the	D1CPS	and	TM	implementations exhibit	downward	
efficiency	trends	with	increasing	numbers	of	cores.		For	the	D1CPS	tool,	the	solid	
comparability	of	the	test	case	problems suggest	the	inefficiencies	originate	as	a	
consequence	of	increasing	the	amount	of	time	necessary	to	complete	individual	

8											Dahlgren	et	al.

sampling and	updating	functions.		For	the	TM	approach,	the	problem	comparability	
indicates	sampling	inefficiencies	stem	from	increased	time	costs	associated	with	
completing	individual	sampling	processes.		Accordingly,	decreased	sampling	
efficiencies	imply that	the	observed	execution	cost increases	result from	issues
relating	to	the	balancing of concurrent	computing	demands	from basic	node	
maintenance	and	runs	of	the	D1CPS	and	TM	tools.		On	the	other	hand,	decreased
efficiencies	associated	with	updating	processes	point	to	confounding	factors	
stemming	from	hardware	issues	and/or	MPICH	communication	settings on	the	
current	hardware.		As	mentioned	before,	all	tests	in	this	report	used	an	in-house	
four-node/128-core	development	cluster.	Preliminary	tests	on	Edison	at	the	DOE	
NERSC	Leadership	Computing	facility	show	weak	scaling	efficiencies	much	closer	to	
100%	for	test	cases simulating	the	behaviors	of	sampling	and	updating	processes	
for	the	distributed	1	core	per	subdomain	implementation.	 While	the	results	are	too	
preliminary	to	draw	any	solid	conclusions,	the	difference	in	scalability	between	the	
two	platforms	suggests	that	the	specifics	of	the	communication	hardware	and	
protocols on	the	four-node	development	cluster	will	need	to	be	examined. These	
comparisons	are	the	subject	of	ongoing	work.

V.		Conclusion
The	performance	analysis	investigated	the	weak	scaling	efficiencies	of	the	

D1CPS and	TM code	implementations in	relation	to	increasing	numbers	of	
processors.		The	study	required	manually	instrumenting	the	sampling	and	updating	
functionalities of	the	tools to	capture	real	execution	times	gathered	from	test	runs	as	
the	solvers converged	toward	the	true	solution	of	the	test	PDE.		Results	of	sampling	
and	updating	efficiencies	per	iteration	suggest	poor	weak	scaling on	the	current	
four-node	development	cluster.

Acknowledgements
This	work	was	supported	in	part	by	the	U.S.	Department	of	Energy,	Office	of	

Science,	Office	of	Workforce	Development	for	Teachers	and	Scientists	(WDTS)	under	
the	Science	Undergraduate	Laboratory	Internship	(SULI)	program.		This	material	is	
based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	
Office	of	Advanced	Scientific	Computing	Research,	under	Award	Number	13-
016717.		Sandia	National	Laboratories	is	a	multi-program	laboratory	managed	and	
operated	by	Sandia	Corporation,	a	wholly	owned	subsidiary	of	Lockheed	Martin	
Corporation,	for	the	U.S.	Department	of	Energy’s	National	Nuclear	Security	
Administration	under	contract	DE-AC04-94AL85000.		

9											Dahlgren	et	al.

References
1.		M.	Garbey,	“Acceleration	of	the	Additive	Schwarz	Method	for	Elliptic	Problems,”	

SIAM	J.	Sci.	Comput.,	26(6),	1871-1893	(2005).
2.		K.	Sargsyan,	F.	Rizzi,	C.	Safta,	K.	Morris,	H.	Najm,	O.	Knio,	B.	Debusschere,	“Fault	

resilient	probabilistic	preconditioner	method	for	one-dimensional	PDEs”,	in	
preparation	(2014).

3.	 “Measuring	Parallel	Scaling	Performance,”	
https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performa
nce.

https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance
https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance

10											Dahlgren	et	al.

APPENDIX	A:		TM	TEST	CONFIGURATION	TABLE

TABLE	I:		Parameter	configurations	for	the	6	Task	Manager	test	cases.

APPENDIX	B:		WEAK	SCALING	PERFORMANCE	GRAPHS

FIG.	1.		Minimum,	average,	and	maximum	weak	scaling	efficiencies	for	the	D1CPS	
sampling	process	graphed	in	relation	to	increasing	numbers	of	processors.

#	of	
Subdomains

#	of	Cores #	of	Servers Client	Size Total	#	of	client	core	sets

8 8 2 1 6
8 8 2 3 2
16 16 4 1 12
16 16 4 3 4
32 32 8 1 24
32 32 8 3 8

11											Dahlgren	et	al.

FIG.	2.		Minimum,	average,	and	maximum	weak	scaling	efficiencies	for	the	D1CPS	
updating	process	per	iteration	graphed	in	relation	to	increasing	numbers	of	cores.

FIG.	3.		Average	weak	scaling	efficiencies	for	the	TM	sampling	process	per	client	size	
graphed	in	relation	to	increasing	numbers	of	cores

12											Dahlgren	et	al.

FIG.	4.		Average	weak	scaling	efficiencies	for	the	TM	updating	process	per	iteration	
graphed	in	relation	to	increasing	numbers	of	cores.

